GPS — глобальная система определения координат

Navstar

GPS (Global Positioning System — глобальная система определения координат) — спутниковая поисковая система, составленная из совокупности 24 спутников, помещенных на орбиту американским Министерством обороны и наземных станций слежения, объединенных в общую сеть. Глобальная система определения координат работает в любых метеорологических условиях, в любой точке мира, 24 часа в день. Никаких ограничений на использование системы определения координат не существует.

 

История развития GPS

GPS изначально разрабатывалась в сугубо военных целях: система обороны нуждалась, с одной стороны, в средствах наведения высокоточного оружия дальнего действия и, с другой стороны, в универсальной системе навигации, доступной для массового применения в армии. Объединив эти задачи в одну –создание системы точного позиционирования, - с 1960-х годов Министерство обороны США приступило к работе. Видя перспективность этой системы не только для военных целей, разработчикам была поставлена задача, чтобы оборудование было доступно широкому кругу пользователей, но при условии, что военные смогут в любой момент ограничить действие системы.

Когда основные требования к системе были определены, военно-морские и военно-воздушные силы США приступили к разработке концепции использования радиосигналов, излучаемых со спутников, в целях навигации. Безусловно, поводом послужил запуск первого искусственного спутника. США следили за его полетом, принимая сигнал бортового передатчика на наземных пунктах с заранее известными координатами. Были изучены параметры прохождения сигналов через толщу земной атмосферы и возникающий при движении спутника по орбите доплеровский сдвиг частоты, по которому можно вычислить полную орбиту спутника. Доктор Фрэнк МакКлар (FrankT McClure) из APL(Applied Physics Laboratory) указал, что, наоборот, если известна полная орбита спутника, то по доплеровскому сдвигу можно вычислить точное положение спутника на орбите. Возник интерес к обратной задаче: расчет координат приемника на основании принятых со спутника сигналов.

Система Transit, разработанная в 1964 году, стала предшественником GPS. Она состояла из 7 низкоорбитальных спутников, которые излучали стабильные сигналы. Несколько наземных станций контролировали и корректировали параметры орбиты. Пользователи определяли свои координаты на земной поверхности, измеряя доплеровский сдвиг частоты от каждого спутника. В 1967 году система Transit стала доступна для гражданских пользователей. Она была очень быстро приспособлена для навигации судов, но из-за большого количества недостатков не могла применяться в самолетах и других быстродвижущихся объектах.

Navstar

Второй предшественник GPS, Timation, был разработан под руководством Роджера Истона в NRL (Naval Research Laboratory, Военно-морская исследовательская лаборатория). Программа исследований стартовала в 1964 году и включала в себя запуск двух искусственных спутников, несущих на борту сверхстабильные часы, передачу со спутника прецизионных сигналов точного времени и определение двухмерных координат приемника. Основная идея состояла в использовании синхронизированных передатчиков, излучающих закодированных сигнал. Измеряя задержку прохождения сигнала от спутников, имеющих заранее известные координаты, можно вычислить расстояние до спутников и рассчитать на основании этого координаты приемника. Таким образом, был заложен и экспериментально опробован базовый принцип работы GPS.

Тем временем ВВС США работали над трехмерной системой («Система 621В») с непрерывным доступом. В 1972 году была продемонстрирована работа системы, использующей новый метод разделения сигналов спутников – кодовое разделение на основе псевдослучайного шумоподобного сигнала. В этом варианте все спутники излучают на одной несущей частоте, которая модулируется сверхдлинным псевдослучайным кодом, индивидуальным для каждого спутника, который позволял значительно увеличить помехоустойчивость и передавать в сигнале информацию о положении спутников (эфемериды), а также метки точного времени. В простейшем случаем коды могли быть как открытыми для общего пользования, так и секретными. Гражданским пользователям были доступны только открытые коды, поэтому достаточно было внести преднамеренные погрешности в информацию, передаваемую открытыми кодами, как работоспособным останется только военное оборудование, а гражданские приемники перестанут функционировать с приемлемой точностью. Во время испытаний этой системы была сформулирована концепция глобальной системы из 16 спутников на геостационарных орбитах, чьи проекции на земную поверхность были вытянуты на 30° севернее и южнее экватора.

В течение последующих нескольких лет комитет, собранный для координации усилий всех исследовательских групп, разрабатывающих различные навигационные системы, окончательно определил, какой должна быть система спутниковой навигации. В апреле 1973 ода военно-воздушные силы были утверждены, как ведущий разработчик DNSS (Defensive Navigation Satellite System, оборонительная система спутниковой навигации). В декабре того же года Министерство обороны США утвердило и профинансировало первый из трех этапов разработки NAVSTAR GPS, системы, построенной по сформулированной концепции.

Первый этап подразумевал экспериментальное подтверждение пригодности общей концепции спутниковой навигационной системы, демонстрацию заложенного в нее потенциала и конкретизацию дальнейшего плана работ. Во второй этап включались полномасштабные инженерные разработки, в третий – производство и развертывание сегментов GPS. Первые экспериментальные спутники позволили опробовать метод измерения дальности с использованием широкополосного радиосигнала и прецизионных меток времени, получаемых от атомных часов. Круговые орбиты спутников последовательно увеличивались с 925 км до 13000 км, а затем достигли окончательной величины в 20145 км. Так же последовательно менялась несущая частота передатчиков: сначала 400 МГц, затем 1227 МГц, и позднее достигла современного значения 1575 МГц. Военные предусмотрели двойное назначение спутников GPS, в дополнение к имеющемуся оборудованию позиционирования и точного времени, спутники могли нести на борту датчики ядерного взрыва (NUDET, nuclear detonation), предназначенные для обнаружения фактов испытания ядерного оружия, выявления ядерной атаки и оценки масштабов разрушений.

Navstar

В августе 1979 года все базовые компоненты системы были введены в строй, Объединенный Центр объявил о переходе к следующему этапу работ. Период с 1980 по 1989 годы отмечен попытками сохранить устойчивое развитие GPS, сопровождавшееся несколькими существенными спадами, связанными главным образом с проблемами финансирования. Первый спутник этого периода был выведен на орбиту в феврале 1989 года и приступил к работе в апреле. Затем были запущены еще 23 спутника.

Одновременно со спутниковым сегментом развивались наземный и пользовательский. Управление было перенесено на авиабазу Фэлкон, штат Колорадо. Система была полностью протестирована и продемонстрировала успешное взаимодействие между наземными пунктами управления, спутниками и оконечным оборудованием.

Первым полномасштабным боевым испытанием для системы стал кризис в Персидском заливе, случившийся в 1990-1991 годы. Спутники GPS позволили силам антииракской коалиции маневрировать, определяться на местности и вести огонь с беспрецедентной точностью 24 часа в сутки. Условия были тяжелейшие – частые песчаные бури, отсутствие мощенных дорог, растительного покрова и других ориентиров.

В марте 1994 года формирование созвездия GPS было завершено запуском 24-го спутника. Система поддерживает ЛО стометровую точность позиционирования для гражданских пользователей. Также было заявлено, что Министерство обороны США обязуется за 48 часов уведомлять гражданских пользователей о плановом отключении сервиса стандартного позиционирования и уведомлять об аварийных ситуациях. С 1996 года на орбиту начали выводить спутники нового типа, имеющие расширенные возможности, включая систему автономной навигации. Она позволяет спутнику, в случае невозможности контакта с наземной станцией, функционировать автономно без потери точности как минимум 180 дней.

Во время разработки первоначальной концепции GPS считалось, что точности в 100 метров будет достаточно для гражданских пользователей. При испытаниях в конце 1970-х годов выяснилось, что коды стандартной точности позволяют достичь значительно лучших результатов. Реальная точность позиционирования в то время находилась в пределах 20-30 м. Для обеспечения преимущества военных в использовании GPS было решено ввести преднамеренное ограничение точности для гражданских пользователей (вводились преднамеренные ошибки в передаваемые спутниками навигационные данные, занижалась точность эталонных сигналов времени). Применение GPS расширялось, и вскоре стандартная стометровая точность перестала удовлетворять людей. В полночь с 1 на 2 мая 2000 года принудительное отключение точности было отключено.

Ведутся работы по обновлению системы GPS путём замены орбитальной группировки на НКА пятого поколения (GPS-III), для чего:

• в Вотертоне, шт. Колорадо, компанией Lockheed Martin выполнена сборка 10 НКА GPS-III;

• запуск НКА GPS-IIISV01 произведен в декабре 2018 г. ракето-носителем Falcon-9 (первый из десяти спутников системы GPS –III, которые должны постепенно заменить собой другие аппараты, находящиеся сейчас на орбите);

• ВВС США в сентябре 2018 г. заключили дополнительный контракт с компанией Lockheed Martin на изготовление 22 НКА GPS-IIIF;

• компания Raytheon поставила систему начального этапа наземного комплекса управления (НКУ) нового поколения, известную как Блок 0, для обеспечения запусков и орбитальных проверок НКА GPS-III.

Использование НКА GPS-III должно обеспечить повышение потребительских характеристик, в том числе: мощность, устойчивость, надёжность, помехозащищённость, точность местоопределения, расширить возможности использования гражданского сигнала L1C и сигнала для военных потребителей M-Code.

В США специалистами компании Raytheon завершен процесс разработки нового поколения системы спутниковой связи и навигации GPS, запуск которой должен состояться в 2021 году. Разработаны программное и аппаратное обеспечение новой системы оперативного управления системы GPS. 

Новая система получила обозначение GPS OCX, и в данный момент начинается фаза ее тестирования и интеграции с оборудованием уже существующей системы.

Корпорация Raytheon сообщает, что работы по этому проекту начались в 2016 году по заказу командования ВВС США.

30 июня 2020 года Американская компания SpaceX вывела на орбиту третий навигационный спутник GPS третьего поколения. Первый спутник GPS III с модернизированной системой навигации был запущен на орбиту в августе 2018 года. Второй спутник GPS третьего поколения вывела на орбиту в августе 2019 года также для нужд ВВС США американская компания United Launch Alliance.


Состав системы

Система GPS состоит из трех сегментов:

  • космический сегмент
  • сегмент контроля и управления
  • сегмент навигационной аппаратуры потребителей/аппаратуры спутниковой навигации
  

Орбитальная группировка GPS

Количество штатных ка

32

Высота орбиты

20 200 км

Количество плоскостей

6

Большая полуось

26 560 км

Период

11 ч 58 мин

Наклонение

55°

Космический сегмент системы GPS состоит из 32 навигационных космических аппаратов, находящихся на шести орбитах высотой 20 200 км наклонением 55° (по 4 НКА для штатной структуры группировки) и периодом обращения 11 часов 58 минут, т. е. орбиты космических аппаратов GPS являются синхронными. Долготы восходящих узлов различаются на 60°. 

Спутники GPS питаются солнечной энергией. Они имеют резервные бортовые батареи, чтобы поддержать движение в случае солнечного затмения. Небольшой ракетный ускоритель на каждом спутнике обеспечивает его правильную траекторию полета. 

Слежение за орбитальной группировкой осуществляется с главной контрольной станции, расположенной на авиабазе ВВС США Schriever, штат Колорадо, США и с помощью 10 станций слежения, из них три станции способны посылать на спутники корректировочные данные в виде радиосигналов с частотой 2000—4000 МГц. Спутники последнего поколения распределяют полученные данные среди других спутников. 

На данный момент орбитальная группировка GPS включает в себя 33 КА, 31 КА используется по целевому назначению, 1 КА на этапе вывода из системы и 1 КА временно выведен на техобслуживание. 

 

Принцип работы

Cозвездие НКА GPS

Спутники системы двигаются по точной орбите с периодом обращения 11 часов 58 минут и передают информацию на Землю. Приемники GPS принимают эту информацию и, используя триангуляцию (разбивку на треугольники), вычисляют точное местоположение пользователя. По существу, приемник GPS сравнивает время, переданное спутником со временем, когда это время было отправлено. Разница во времени говорит приемнику о том, как далеко находится спутник. Измерив такое расстояние еще до нескольких спутников, приемник может определить положение пользователя и, например, показать ее на электронной карте навигационного приемника (навигатора). 

Навигатор должен быть привязан к сигналам, по крайней мере, трех спутников для определения двух координат (широта и долгота). Имея четыре или больше спутников в поле зрения, приемник может определить три координаты пользователя (широта, долгота и высота). Как только положение пользователя будет определено, система может вычислить другую информацию, типа скорости, курса, пройденного расстояния, расстояния до точки назначения, восхода солнца и времени заката и т.д. 

Сегодняшние приемники глобальной системы определения координат чрезвычайно точны благодаря своей параллельной многоканальности. 12 параллельных приемников GPS способны поддерживать сигналы со спутников даже в плотной листве или городских зданиях. Некоторые атмосферные факторы и другие источники погрешности могут влиять на точность приемников глобальной системы. 

Более новые модели приемников GPS с системой WAAS (Wide Area Augmentation System) способны улучшить точность определения координат до 2-3 метров. Эта расположенная в космосе система передает информацию, обеспечивающую непрерывность спутниковых сигналов, а также данные корректировок, определяемые наземными станциями. Правительства США, Канады и других государств установили дифференциальные GPS-станции (DGPS), предназначенные для передачи корректирующих сигналов. Эти станции работают в прибрежных районах, а также в бассейнах судоходных рек. Пользование системой DGPS является бесплатным. Сигналы, передаваемые станциями DGPS, не только корректируют ошибки при расчете местоположения, но также компенсируют ухудшение точности GPS, вызванное использованием программы SA (Selective Availability), проводимой Департаментом Обороны США. Для использования DGPS требуется дополнительное оборудование. 

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью. 

 

Источники ошибок сигнала GPS

Факторы, которые могут ухудшить сигнал GPS и таким образом повлиять на точность, следующие: 

  • Ионосфера и задержки тропосферы — спутниковый сигнал слабеет, поскольку проходит через атмосферу. Система GPS использует встроенную программу, которая вычисляет среднее количество задержки, чтобы частично исправить ошибки данного типа.
  • Разветвленный сигнал — Это происходит, когда сигнал глобальной системы определения координат отражен от объектов типа высоких строений или поверхностей скал до того, как достигает приемника. Это увеличивает время прохождения сигнала, таким образом, вызывая ошибки.
  • Ошибки часов приемника — встроенные часы приемника не столь же точны как бортовые атомные часы спутника GPS. Поэтому, это может иметь очень небольшие ошибки синхронизации.
  • Орбитальные ошибки — Также известны как эфемероидные ошибки, — погрешности местоположения спутника.
  • Количество спутников — Чем больше спутников может видеть приемник, тем лучше точность. Модули глобальной системы обычно не будут работать в закрытом помещении, под водой или землей.
  • Спутниковая геометрия — Это относится к относительному положению спутников в любое данное время. Идеальная спутниковая геометрия существует, когда спутники расположены под широкими углами относительно друг друга.
  • Намеренное снижение производительности спутникового сигнала — Основным источником было наличие, так называемого, режима "ограниченного доступа". В этом режиме в сигналы спутников Министерством обороны США априорно вводилась погрешность, позволяющая определять местоположение с точностью 30-100 м. С 1 мая 2000 года режим "ограниченного доступа" был отключен.

 

Сферы применения GPS

Хотя проект изначально был разработан сугубо для военных целей, сегодня подавляющее большинство пользователей – гражданские лица. Практически любое современное мобильное устройство оснащено GPS-навигатором, не говоря уже о профессиональном оборудовании моряков, летчиков, спасателей, врачей, ученых и, конечно же, военных. 

Основные сферы применения GPS:

  • картография. При помощи GPS составляются подробные карты и планы местностей с рельефом любой сложности. В дальнейшем эти карты могут также использоваться по самым разным направлениям – от туризма до разработки военных стратегий;
  • геодезия. Очерчиваются точные границы земельных участков и координаты каких-либо конкретных объектов;
  • транспортный мониторинг. Всем известные «карты пробок». Без помощи GPS отслеживание транспортного потока было бы непозволительной роскошью с применением воздушного слежения;
  • сотовая связь. Применяется для определения точного местоположения абонента, звонящего в службу спасения, поскольку пострадавший не всегда может точно указать свои координаты или просто не успевает этого сделать;
  • мониторинг тектоники. При помощи GPS ведутся наблюдения за перемещениями тектонических плит. Это позволяет, в частности, спрогнозировать землетрясения и извержения вулканов;
  • при прогнозировании погоды. Сотни метеорологических станций по всему свету передают данные по погодным условиям и при этом связывают их со своим местоположением;
  • в авиации и мореходстве передатчики GPS позволяют отслеживать курсы самолетов или судов в реальном времени и при необходимости быстро среагировать на сигнал бедствия;
  • геотаргегинг – те или иные события, фотоснимки можно привязать к конкретному месту на Земле. Этим часто пользуются посетители социальных сетей;
  • навигация. Пожалуй, самая распространенная сфера применения GPS на сегодня.

 

Типы космических аппаратов

В настоящее время восполнение орбитальной группировки осуществляется запуском космических аппаратов Block IIF («F» – follow on – продолжение). В соответствии с действующими планами КА Block IIF должны сменить на орбите КА Block IIA, КА Block III придут на смену Block IIR («R» – replacement – замена). 

Основной задачей КА Block III является предоставление навигационных услуг с помощью нового навигационного радиосигнала L1C и повышение точности эфемеридно-временной информации, доступности навигационного радиосигнала, мощности излучения, а также увеличение срока активного существования.  

В течение ближайших 18-24 месяцев планируется постепенное наращивание функциональных возможностей всех сегментов модернизованной системы GPS III.

Началась разработка первых двух КА серии GPS IIIF, что позволит существенно снизить время сборки, установки и тестирования, благодаря модернизации серийного производства на основе опыта производства GPS III.

 

Характеристики
КА GPS BLOCK IIA
КА GPS BLOCK IIR
КА GPS BLOCK IIR-M
КА GPS BLOCK IIF
КА GPS BLOCK III
Головной подрядчик Rockwell International Lockheed Martin Lockheed Martin Boeing Lockheed Martin
Срок активного существования 7,5 лет 10 лет 10 лет 12 лет 15 лет
Масса на орбите, кг 985 1126,7 1126,7 1465,1 2161
Габариты, м     1,58×1,96×2,21 2,49×2,03×2,24 2,46×1,78×3,40
Солнечные батареи 2 кремниевые панели мощностью 710 Вт 2 кремниевые панели мощностью 1040 Вт 2 кремниевые панели мощностью 1040 Вт 3 трехпереходные арсенид-галлиевые мощностью 1900 Вт 2 ультра трехпереходные (UTJ) мощностью 4480 Вт
Аккумуляторные батареи 3 никель-кадмиевые 2 никель-водородные перезаряжаемые 2 никель-водородные перезаряжаемые никель-водородные перезаряжаемые 2 никель-водородные перезаряжаемые
Сигналы L1 C/A
L1/2 P(Y)
L1 C/A
L1/2 P(Y)
L1 C/A
L1/2 P(Y)
L2C
L1/2 M-Code
L1 C/A
L1/2 P(Y)
L5I
L5Q
L1M
L2M
L2C
L1 C/A
L1P(Y)
L1C
L2C
L2M
L5
L1/2 M-Code
БСУ 2 Rb, 2 Cs 3 Rb 3 Rb 2 Rb, 1 Cs 3 Rb

 

Навигационные радиосигналы

Спектр навигационных радиосигналов системы GPS 

 

Характеристики навигационных радиосигналов системы GPS
Диапазон Несущая частота, МГц Сигнал Длительность
кода ПСП, символы
Тактовая частота, МГц Вид модуляции Скорость
передачи ЦИ,
БИТ/С
L1 1 575,42 C/A
P
M
L1CD
L1CP
1 023
~ 7 дней
нет данных
10 230
10 230·1 800
1,023
10,23
5,115
1,023
1,023
BPSK
BPSK
ВОС(10, 5)
ВОС(1,1)
ТМВОС(6, 1, 1/11)
50/50
50/50
нет данных
100/50
пилот-сигнал
L2 1 227,6 L2C
M
~ 7 дней
М: 10 230
L: 767 250
нет данных
10,23
1,023
5,115
BPSK
BPSK
ВОС(10, 5)
50/50
50/25
нет данных
L5 1 176,45 L5I
L5Q
10 230·10
10 230·20
10,23
10,23
BPSK
BPSK
100/50
пилот-сигнал

 

Система координат и шкала времени

Система координат

В GPS используется Всемирная геодезическая система 1984 года (World Geodetic System – WGS-84). Очередное уточнение параметров системы WGS-84 (G1678) состоялось в 2012 году, при этом расхождения между действующей системой WGS-84 и ITRF 2008 составляет величину порядка 1 см, т. е. обе системы являются фактически идентичными. 

 

Параметры земного эллипсоида системы WGS-84

Параметр

Значение

Большая полуось a, м

6 378 137, 0

Параметр сжатия эллипсоида

1/298,257223563

Угловая скорость вращения Земли ω, рад/с

7 292 115 * 10-11

Гравитационная постоянная Земли, м32

2 986 004,418 * 10-8

 

Система времени

Системное время GPS связано с координированным всемирным временем (UTC) в соответствии с наблюдениями морской обсерватории США (USNO). Номинально шкала времени GPS имеет постоянное, равное 19 с, расхождение с международным атомным временем TAI. Отсчёт времени ведётся в неделях GPS и секундах в рамках текущей недели, начало отсчёта – 00 ч 00 мин 06.01.1980. В системе GPS номер недели записывается с помощью 10-разрядного двоичного числа, максимальное значение номера недели равно 1 023. Нулевой номер недели повторился в полночь с 21 на 22 августа 1999 г. 

 

Наземный комплекс управления

Управление орбитальной группировкой GPS осуществляет 2-ая оперативная космическая эскадрилья Космического командования ВВС США. В настоящее время управление орбитальной группировкой GPS осуществляет наземный комплекс управления 2 поколения (Operational Control Segment - OCS), который включает в себя: 

Наземный комплекс управления GPS реализует беззапросную технологию эфемеридно-временного обеспечения. Глобальная сеть командно-измерительных станций позволяет производить закладку информации на борт с периодичностью 4 - 6 ч. 

Была проведена модернизация текущего НКУ (COps) для обеспечения управления первыми космическими аппаратами GPS III.